

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

World Class SystemVerilog & UVM Training

Sunburst Design - SystemVerilog Fundamentals
by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

Cliff Cummings is the only Verilog & SystemVerilog Trainer who helped develop every IEEE &
Accellera Verilog, Verilog Synthesis and SystemVerilog Standard.

2 Days (in-person or Webex)
70% Lecture, 30% Lab
Intermediate - Advanced Level (Verilog experience required)

Course Objective

Introduce engineers to world class SystemVerilog language capabilities using award winning
materials developed by renowned Verilog & SystemVerilog Guru, Cliff Cummings

Upon completion of this course, students will understand:

 SystemVerilog language fundamentals
o includes new SystemVerilog data types and capabilities
o includes new SystemVerilog RTL and abstraction capabilities
o includes use of dynamic types and arrays for behavioral modeling
o includes 7 different SystemVerilog FSM coding styles
o optionally - includes inclusion of C-models using the new SystemVerilog DPI
o includes using SystemVerilog Assertions (SVA) for design and verification

 Students will have a good understanding of SystemVerilog RTL design features.

Course Overview

Sunburst Design - SystemVerilog Fundamentals is a 2-day fast-paced intensive course that
introduces new SystemVerilog features for design, simulation and synthesis. Efficient and
proven coding styles are combined with frequent exercises and insightful labs to demonstrate the
capabilities of new SystemVerilog features. You will discover that SystemVerilog capabilities
are fully backward compatible with Verilog-2001 designs.

This SystemVerilog training was developed and is frequently updated by the renowned
SystemVerilog guru and IEEE SystemVerilog committee member, Cliff Cummings, who has
presented at numerous SystemVerilog seminars and training classes world wide, including the
2003-2004 SystemVerilog NOW! Seminars and 2010 ModelSim SystemVerilog Assertion Based
Verification Seminars.

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

Target Audience

Sunburst Design - SystemVerilog Fundamentals is intended for design & verification engineers
who require an introduction to IEEE SystemVerilog capabilities.

Prerequisites (mandatory)

This course assumes that students have a practical working knowledge of Verilog HDL or have
completed Verilog HDL training. Engineers with VHDL synthesis experience and some Verilog
exposure will do well in this class. Engineers with no prior HDL training or experience will
struggle in this class.

Online Training Details

Training will be conducted using the Paradigm Works WebEx account.

All materials will be provided as color, searchable, protected PDF files with a 5-year license, and
are accessible on laptops running Windows 7 and above. When enrolling, students need to share
their email address and the country where they are located for Paradigm Works to generate the
licensed electronic materials.

Students should have access to their own login and simulation license. The labs will be available
for download to work during class. Students will keep a copy of their labs at the end of class.

For students who do not have access to their own simulation license, Paradigm Works has a
limited number of training logins that can be accessed by students using VNC during this
training class. Any VNC viewer should work. Cliff uses TigerVNC and students only need to
download and install the TigerVNC Viewer App.

Course Customization?

To schedule dedicated training for your company, Sunburst Design courses can be customized to
include your company's coding guidelines or to modify the course for a different audience.
Sections can be added or deleted from a course to meet you company's needs.

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

COURSE SYLLABUS
DAY ONE

(1) SystemVerilog Enhancements & Methodology Overview

- Includes a quick review of SystemVerilog resources available to design & verification
engineers.

 Verilog & SystemVerilog Keywords
 SystemVerilog Books & Resources
 SystemVerilog Enhancements Strategy & High-Level Methodology

(1a) Data Types & Typedefs

- Includes data types, enumerated types, compilation units, packages, casting and randomization
functions.

 Nets & Variables Fundamentals & Guidelines
 Blocking & Nonblocking Assignment Fundamentals & Guidelines

 SystemVerilog data types
 Enhanced literal numbers syntax
 Resolved & Unresolved types
 4-state & 2-state types
 Typedefs
 Near-Universal types
 SystemVerilog type usage guidelines
 Enumerated types
 Struct data type intro
 Type parameters
 Intro to the SystemVerilog program construct - and why you should avoid it.
 $unit & $root
 Compilation units & separate compilation
 Packages & :: (package scope operator)
 SystemVerilog package strategies
 Strings
 Static & dynamic type-casting
 Random number generation: $random -vs- $urandom -vs- $urandom_range
 Simulation command aliases & switch definitions
 LABS: Multiple SystemVerilog types, typedefs, type-casting and logic labs

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(2) SystemVerilog Operators, Loops, Jumps. Intro to Logic-Specific Processes, Unique &
Priority - full_case & parallel_case. Enhanced functions & tasks

- The new always_type blocks show design intent and help ensure construction of proper
hardware designs. The always_type blocks are discussed in detail in this section. This section
also details how unique and priority are new SystemVerilog replacements for the dangerous
"Evil Twins," full_case parallel_case. Enhancements to tasks and functions make them more
useful and easier to use.

 New SystemVerilog operators
 Enhanced loops & jumping statements
 Logic specific processes (always_type blocks) document designer intent
 always_comb / always_latch / always_ff
 Added design checks using always_type blocks
 always @* -vs- always_comb
 void functions
 always_comb & void functions
 Combinational sensitivity
 Design encapsulation through void functions
 always_ff for DDR? (SystemVerilog-2009 enhancement)
 full_case parallel_case, "the Evil Twins"
 What is full_case?
 What is parallel_case?
 unique & priority case
 unique & priority if
 unique0 (SystemVerilog-2009 enhancement)
 SystemVerilog enhancements to tasks & functions
 `timescale directive
 SystemVerilog timeunit & timeprecision
 * LABS: simple SystemVerilog combinational and sequential logic labs

(2) Implicit .* and .name Port Instantiation
- Implicit port connections can reduce top-level ASIC and FPGA coding efforts by more than
70% and simultaneously enforce greater port type checking.

 Verilog-2001 positional & named ports
 SystemVerilog .* implicit ports
 SystemVerilog .name implicit ports
 Implicit port connection rules & comparisons - includes IEEE 1800 latest updates
 Strong port-type checking
 New debugging techniques - automatic expansion of .* ports - auto-schematic generation
 Block-level testbenches with implicit ports
 Advantages & disadvantages
 LABS: implicit port instantiation labs

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(3a) DPI - Direct Programming Interface - SystemVerilog's C-Language Interface
 (Reference Material Only - Not Lectured unless requested) - The Direct Programming
Interface (DPI) can be used to simulate C-code with SystemVerilog code. This section describes
how this can be done and how DPI programming differs from PLI programming.

 DPI layers
 function import
 function export
 task export
 Using SystemVerilog simulation timing in a C model
 DPI -vs- PLI example
 No PLI required
 How to compile and simulate C-code with SystemVerilog designs
 SystemVerilog & SystemC

DAY TWO

(4) Nonblocking Assignments, Race Conditions & SystemVerilog Event Scheduling
- SystemVerilog is fully backward compatible with Verilog-2001 (it is also fully race backward
compatible!) This section describes in detail how the new SystemVerilog event scheduling works
and how it will reduce race conditions between RTL designs and verification suites.

 Verillog-2001 Event Scheduling
 8 guidelines for RTL coding & nonblocking assignments
 SystemVerilog enhanced scheduling - includes IEEE 1800 latest updates
 Verilog -vs- SystemVerilog race conditions
 Scheduling of new SystemVerilog commands
 * Blocking & Nonblocking Assignment Details
 * Mixed RTL & Gate simulations

(5) Structs, Unions, Packed & Unpacked Arrays
- Packed & unpacked arrays, unions and structs allow greater abstraction and more concise
coding. The new dynamic array types are used more in verification and have been moved to the
UVM training course.

 Structs & assignment patterns
 Packed & unpacked arrays
 Array indexing
 Structs & packed structs
 Unions & packed unions

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

NOTE: For Advanced SystemVerilog for Design Training, the FSM Section is moved to day-3
along with Multi-Clock Cross Domain Clocking (CDC) and 2-clock FIFO design training.
This gives more time for lecture and labs during the 2-day SystemVerilog Fundamentals
Training

(6) SystemVerilog FSM Design Techniques
- Seven different FSM coding styles, enhanced with new SystemVerilog constructs, are detailed
and compared for coding and synthesis efficiency. Multiple FSM designs are benchmarked for
coding style efficiency.

 FSM coding goals
 Moore & Mealy
 Binary & Onehot
 ASIC -vs- FPGA FSM design
 Review proven FSM coding styles
 Three always blocks - recommended
 Two always blocks – recommended (combinational outputs)
 One always block - avoid this
 Four always blocks – recommended (better synthesis results)
 Onehot case(1'b1) - recommended
 Onehot parameters - avoid this
 Output encoded - recommended
 Coding & synthesis efficiency
 SystemVerilog FSM enhancements
 Advanced enumerated types
 LABS: SystemVerilog FSM design labs

(7) Interfaces
- Interfaces are a powerful new form of abstraction and this section details how they work for
design and verification. This section also discusses when and when not to use interfaces. Virtual
interfaces are described after the introduction of virtual classes and virtual methods in the UVM
training class.

 Interface usage overview
 Introduction to generic interfaces
 Interfaces -vs- records
 How interfaces work
 4 requirements for good interface usage
 Interfaces - legal & illegal usage
 Interface constructs
 Interface modports
 LABS: multiple interface and interface-protocol labs

Rev 202407 - © Sunburst Design, Inc. - www.sunburst-design.com

Questions about course content and customization, email Cliff Cummings: cliffc@sunburst-design.com
Questions about pricing, quotes, scheduling, email Michael Hoyt: michael.hoyt@paradigm-works.com

(8) SVA - SystemVerilog Assertions
- This section details how the SystemVerilog Assertion (SVA) syntax works and how assertions
can be used for design and verification. Special macro-techniques are shown to reduce assertion
coding effort by up to 80%. Other recommendations to reduce SVA coding errors are included in
this section.

 What is an assertion? / Who should add assertions?
 Assertion benefits - bug detection efficiency
 SystemVerilog assertion types
 SystemVerilog immediate assertions
 SystemVerilog concurrent assertions
 Assert & cover properties & labels
 Properties and assert property
 Overlapping & non-overlapping implications
 Edge testing functions
 Sequences
 Vacuous success
 Property styles
 Reduced assertion coding effort using macros
 Macros with default arguments (SystemVerilog-2009 update)
 Assertion coding style efficiency benchmarks
 SystemVerilog assertion system functions
 Sampled value functions
 Assertion severity tasks
 Assertion and coverage example of an FSM design
 Binding SVA to an existing model
 Bind command details and guidelines
 LABS: SystemVerilog Assertions with synchronous FIFO design

