

World Class SystemVerilog & UVM Training

SNUG-2024
Silicon Valley, CA

Voted Best Presentation
3rd Place

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Clifford E. Cummings
Paradigm Works, Inc.

Provo, Utah, USA

www.sunburst-design.com

ABSTRACT

There is significant confusion amongst verification engineers about the UVM
m_sequencer and p_sequencer handles and the use of the `uvm_declare_p_sequencer
macro. Every sequence has an m_sequencer handle but sequences only have access
to a p_sequencer handle if the sequence properly declares and sets it, or if the
sequence calls the `uvm_declare_p_sequencer macro.

This paper describes the m_sequencer handle and how it is defined and used by
sequences. This paper also describes the p_sequencer handle, how it is optionally
defined and used, and how it is typically defined using the `uvm_declare_p_sequencer
macro.

This paper explains why the p_sequencer handle is typically required if engineers use
the inferior uvm_config_db resources API. A commonly used virtual sequencer example
is shown to demonstrate the typical usage of the p_sequencer handle by verification
engineers.

This paper describes how to generally avoid usage of the confusing p_sequencer
handle if engineers use the more powerful uvm_resource_db resources API.

SNUG Silicon Valley 2024

Page 2

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Table of Contents
1. Sequences are started on sequencers .. 4

1.1 Sequence.start() ... 4

1.2 Manually Setting the Sequencer Handle ... 4

1.3 `uvm_do macros ... 5

2. UVM Base Classes for Sequencers and Sequences .. 6

2.1 Where is the m_sequencer variable defined? ... 6

2.2 set_sequencer() details .. 7

3. What does the sequence start() method do? .. 8

4. Starting a sequence on null ... 9

5. What does the `uvm_declare_p_sequencer macro do? .. 10

6. sequence.start(null) example .. 12

6.1.1 seq_base ... 12

6.1.2 sequence ... 12

6.1.3 test_base ... 13

6.1.4 test .. 13

7. Typical Virtual Sequence / Virtual Sequencer Technique.. 14

8. Sequences can access resources directly .. 18

9. Summary & Conclusions ... 19

10. Acknowledgements ... 19

11. References .. 19

12. Author & Contact Information .. 19

Table of Figures
Figure 1 - Tests start top-level sequences on sequencers .. 4

Figure 2 - Base & user-defined sequencer and sequence class hierarchies 6

Figure 3 - m_sequencer handle declared in the uvm_sequence_item base class – inherited by
transaction and sequence classes .. 7

Figure 4 - p_sequencer handle in user sequence classes by calling the `uvm_declare_p_sequencer
macro .. 10

Figure 5 - Virtual sequencer example – block diagram ... 14

Figure 6 - env_top block diagram – connect_phase() used to copy subsequencer handles to
vsequncer handles .. 15

SNUG Silicon Valley 2024

Page 3

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Table of Examples

Example 1 - Sequence.start() on full path to sequencer ... 4

Example 2 - seq.start() to environment . agent . sequencer from top-level test 4

Example 3 - set_sequencer command .. 5

Example 4 - Sequence started on null .. 5

Example 5 - Common set_sequencer() mistake ... 5

Example 6 - VCS Fatal UVM null-sequencer error message .. 5

Example 7 - Default activity of set_sequencer() method ... 7

Example 8 - Default m_set_p_sequencer() method definition – empty - returns nothing 7

Example 9 - Default activity of the get_sequencer() method ... 8

Example 10 - virtual start task prototype defined in the uvm_sequence_base class 8

Example 11 - set_item_context method prototype defined in the uvm_sequence_item base class 8

Example 12 - Failing set_sequencer() / seq.start(null) .. 9

Example 13 - UVM source code for the uvm_declare_p_sequencer macro definition 10

Example 14 - Full uvm_declare_p_sequencer error message .. 11

Example 15 - p-sequencer handle declaration made by the `uvm_declare_p_sequencer 11

Example 16 - seq.start(null) – seq_base example .. 12

Example 17 - seq.start(null) – sequence extended from seq_base example 12

Example 18 - seq.start(null) – test_base example .. 13

Example 19 - seq.start(null) – test1 extended from test_base example .. 13

Example 20 - vsequencer (virtual sequencer) class example ... 14

Example 21 - env1 block diagram and env1 class example .. 15

Example 22 - env2 block diagram and env2 class example .. 15

Example 23 - env_top class that sets all the subsequencer handles in the vsequencer 16

Example 24 - vseq_base (virtual sequence base) class using p_sequencer handles 16

Example 25 - Virtual sequence example #1 extended from vseq_base class (vseq_A1_B_A2_A1) 17

Example 26 - Virtual sequence example #2 extended from vseq_base class (vseq_A1_B_C)......... 17

SNUG Silicon Valley 2024

Page 4

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

1. Sequences are started on sequencers
Every sequence must be started on a sequencer, with one notable exception that is detailed in
Section 6. The sequence must have a handle to the sequencer that is executing the sequence.
There are three common methods that can be used to start the sequence.

Figure 1 - Tests start top-level sequences on sequencers

1.1 Sequence.start()

Perhaps the most common way to start a sequence is to use the sequence.start() method. This
method can be invoked from a top-level test as well as from other sequences.

sequence.start(full_path_to_sequencer)

Example 1 - Sequence.start() on full path to sequencer

In the block level diagram shown in Figure 1, test1 starts the sequence seq on the env (with
handle name e), the tb_agent (with handle name agnt), and the tb_sequencer (with handle
name sqr). The command that test1 executes is shown in Example 2.

seq.start(e.agnt.sqr)

Example 2 - seq.start() to environment . agent . sequencer from top-level test

This will cause an m_sequencer handle in the started sequence to be set to e.agnt.sqr.

The m_sequencer handle is described in Section 2.

1.2 Manually Setting the Sequencer Handle

A verification engineer can manually set a sequencer handle inside of the sequence and then the
sequence can be started on null.

SNUG Silicon Valley 2024

Page 5

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Inside of a sequence base class or the sequence itself, the sequencer handle is set using the
command shown in Example 3.

sqr_handle.set_sequencer(full_path_to_sequencer)

Example 3 - set_sequencer command

The test then just starts a sequence and since the sequence already has a handle to the sequencer,
the sequence can be started on null as shown in Example 4

sequence.start(null)

Example 4 - Sequence started on null

Using this technique can be tricky because the sqr_handle in the started sequence typically
cannot be the m_sequencer handle. Engineers who try to use this technique often make the
mistake of trying to run the set of commands shown in Example 5.

1 write_read seq = write_read::type_id::create("seq");
2 …
3 seq.set_sequencer(e.agnt.sqr);
4 seq.start(null)

Example 5 - Common set_sequencer() mistake

In Example 5:

Line 1: A write_read sequence object is created.

Line 3: The m_sequencer handle in the write_read sequence is set to the path
"e.agnt.sqr"

Line 4: The m_sequencer handle in the write_read sequence is overwritten and set to null.

Line 4 will now try to start a write_read sequence on a null sequencer handle, which will
produce a runtime error as shown in Example 6.

UVM_FATAL @0: reporter@@seq [SEQ] neither the item's sequencer nor dedicated
 sequencer has been supplied to start the item in seq

Example 6 - VCS Fatal UVM null-sequencer error message

The seq.start(null) starts a sequence and sets the m_sequencer handle to null. Before
doing seq.start(null), a user-test typically must manually set a sequencer handle that is
frequently inherited from a sequence_base class.

An example using this seq.start(null) technique is shown in Section 6.

1.3 `uvm_do macros

Calling the `uvm_do macro from a user test, extended from uvm_test is illegal.

The `uvm_do macros can be used to start a sub-sequence from a parent sequence, but they cannot
be used to start a sequence from a test.

SNUG Silicon Valley 2024

Page 6

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

The `uvm_do macros can determine if the item to be executed is a transaction or a sequence. If the
item is a transaction, commonly referred to as a sequence_item, the `uvm_do macro will execute
start_item(), randomize(), finish_item(). If the item to be executed is a sequence, the
`uvm_do macro will execute seq.start(m_sequencer).

2. UVM Base Classes for Sequencers and Sequences
It is useful to understand where the m_sequencer handle, and the set_sequencer() and
get_sequencer() methods are defined in the UVM base classes.

Figure 2 - Base & user-defined sequencer and sequence class hierarchies

2.1 Where is the m_sequencer variable defined?

The m_sequencer variable is declared in the src/seq/uvm_sequence_item.svh base class
file, and since the uvm_sequencer_base and uvm_sequence classes are both derivatives of the
uvm_sequence_item class, they both inherit the m_sequencer declaration.

Since user-defined sequences are derivatives of the uvm_sequence base class, user sequences
also inherit an m_sequencer handle. Every sequence must have a properly set m_sequencer
handle that holds the handle of the sequencer where the user-sequence is being executed. An
exception to this rule is described in Section 6.

Figure 3 shows the UVM base class hierarchy associated with uvm_sequence_items and
uvm_sequences. The protected uvm_sequencer_base m_sequencer, declared in the
uvm_sequence_item base class, ensures that only transactions and sequences can access the
m_sequencer handle. The get_sequencer() and set_sequencer() methods are also defined
in the uvm_sequence_item base class. This means that all user transaction classes, the
uvm_sequence_base and uvm_sequence base classes, and the user-defined sequences all
inherit the m_sequencer handle and the get_sequencer()/set_sequencer() methods.

SNUG Silicon Valley 2024

Page 7

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Figure 3 - m_sequencer handle declared in the uvm_sequence_item base class – inherited by transaction and sequence
classes

2.2 set_sequencer() details

When the set_sequencer() method is called, it first sets the m_sequencer handle to the value
that was passed to this method as an input argument. Then it calls UVM's internal
m_set_p_sequencer() method, as shown in Example 7.

// Sets the default sequencer for the sequence to sequencer. It will
// take effect immediately, so it should not be called while the
// sequence is actively communicating with the sequencer.

virtual function void set_sequencer(uvm_sequencer_base sequencer);
 m_sequencer = sequencer;
 m_set_p_sequencer();
endfunction

Example 7 - Default activity of set_sequencer() method

By default, the m_set_p_sequencer() method is empty and does nothing. The default
m_set_p_sequencer() method is shown in Example 8.

// Internal method
virtual function void m_set_p_sequencer();
 return;
endfunction

Example 8 - Default m_set_p_sequencer() method definition – empty - returns nothing

The get_sequencer() method is an accessor method that is used to retrieve the m_sequencer
handle of the current sequence. In theory, UVM users should not reference the m_sequencer
handle directly but are encouraged to use the get_sequencer() method to access the
m_sequencer handle; however, it is not uncommon for engineers to access the m_sequencer
handle directly from user-defined sequences.

SNUG Silicon Valley 2024

Page 8

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

// Returns a reference to the default sequencer used by this sequence.
function uvm_sequencer_base get_sequencer();
 return m_sequencer;
endfunction

Example 9 - Default activity of the get_sequencer() method

The reason behind the invisible internal-variable theory (which is a common software coding
practice) is that the m_sequencer handle is an internal variable that should be unknown to the user,
and as an internal variable, UVM library developers might decide to change the name. A quick
search for any reference to the m_sequencer handle in the UVM 1.2 Class Reference manual
turns up empty.

The empty m_set_p_sequencer() is defined in the src/seq/uvm_sequence_item.svh base
class file. This method is overridden by the `uvm_declare_p_sequencer() macro, and since
the uvm_sequence_base and uvm_sequence classes are both derivatives of the
uvm_sequence_item class, they both inherit the m_set_p_sequencer empty method.

When a user-sequence base class or user-sequence class calls the
`uvm_declare_p_sequencer macro, it overrides the m_set_p_sequencer method and
populates it as described in Section 5. and is shown in Example 13.

3. What does the sequence start() method do?
Sequences are started on a sequencer using the start() method shown in Example 10. The
start() method can take up to four arguments, but in typical usage the verification engineer only
passes in the first argument, which is the full path to the sequencer. The other three arguments have
default values that are rarely modified.

The start() method definition can be found in the src/seq/uvm_sequence_base.svh base
class file and is shown in Example 10.

virtual task start (uvm_sequencer_base sequencer,
 uvm_sequence_base parent_sequence = null,
 int this_priority = -1,
 bit call_pre_post = 1);

Example 10 - virtual start task prototype defined in the uvm_sequence_base class

Three of the arguments on the start() method have default values and are not discussed in this
paper. The full path to the sequencer in the testbench is typically passed as the first argument to the
start() method. The first argument is sometimes called with the value null if the started-
sequence already has subsequencer handles declared and set inside of the calling sequence, and if
the subsequences are started on the defined subsequencer handles and not on the m_sequencer
handle. More about starting sequences on null is described in Section 6.

The start() task calls the set_item_context() method defined in the
src/seq/uvm_sequence_item.svh base class file. The prototype for the
set_item_context() method is shown in Example 11.

function void set_item_context(uvm_sequence_base parent_seq,
 uvm_sequencer_base sequencer = null);

Example 11 - set_item_context method prototype defined in the uvm_sequence_item base class

SNUG Silicon Valley 2024

Page 9

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

When the test or another sequence makes a call to the start() method, (for example:
sequence.start(e.agnt.sqr)), the start() method will call
set_item_context(e.agnt.sqr), which will set the m_sequencer handle in the started
sequence to the value of e.agnt.sqr. The sequence will then execute its code on the sequencer
whose handle is stored in the m_sequencer variable.

4. Starting a sequence on null
One must execute caution when attempting to start a sequence on null. Starting a sequence on
null (for example: sequence.start(null)), will set the m_sequencer handle in the started
sequence to the value of null.

Executing sequence.start(null) requires the sequence to have declared subsequencer
handles in the sequence, and a component, such as the test, must hierarchically set the handles
during the run_phase after the sequence and subsequences have been created.

class test_base extends uvm_test;
 `uvm_component_utils(test_base)
 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 // Initialize the vseq_base handle
 function void init_seq(seq_base seq);
 seq.SQR = e.agnt.sqr;
 endfunction
endclass

class test1 extends test_base;
 `uvm_component_utils(test1)

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 task run_phase(uvm_phase phase);
 write_read seq = write_read::type_id::create("seq");

 phase.raise_objection(this);
 if (!seq.randomize())
 `uvm_error("RAND", "Failed randomization");
 seq.set_sequencer(e.agnt.sqr); // No compilation error
 seq.start(null); // but does not work
 init_seq(seq); // Works!
 seq.start(null); // Works!
 phase.drop_objection(this);
 endtask
endclass

Example 12 - Failing set_sequencer() / seq.start(null)

SNUG Silicon Valley 2024

Page 10

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

5. What does the `uvm_declare_p_sequencer macro do?
The UVM Class Reference Manual, Section 21.3 – with title Sequence-Related Macros, includes the
following definition for the `uvm_declare_p_sequencer macro under the sub-heading,
“Sequencer Subtypes:”

This macro is used to declare a variable p_sequencer whose type is specified by SEQUENCER.

Figure 4 - p_sequencer handle in user sequence classes by calling the `uvm_declare_p_sequencer macro

The UVM base classes do not define a p_sequencer handle. A user could declare a
p_sequencer handle manually, but the p_sequencer handle is declared most often by calling the
`uvm_declare_p_sequencer macro.

If a p_sequencer handle is not created by the user, any attempt to start a sequence on the
p_sequencer handle, or to reference the p_sequencer handle will fail with a null pointer error
message.

The `uvm_declare_p_sequencer(SEQUENCER) macro is defined as shown in Example 13. This
`uvm_declare_p_sequencer macro definition can be found in the
src/macros/uvm_sequence_defines.svh base class file:

`define uvm_declare_p_sequencer(SEQUENCER) \
 SEQUENCER p_sequencer;\
 virtual function void m_set_p_sequencer();\
 super.m_set_p_sequencer(); \
 if(!$cast(p_sequencer, m_sequencer)) \
 `uvm_fatal("DCLPSQ", \
 $sformatf("%m %s Error casting p_sequencer, …",
 get_full_name())) \
 endfunction

Example 13 - UVM source code for the uvm_declare_p_sequencer macro definition

Example 13 shows the `uvm_declare_p_sequencer macro definition with an abbreviated error
message. The fully defined and formatted error message is shown in Example 14.

SNUG Silicon Valley 2024

Page 11

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

$sformatf("%m %s Error casting p_sequencer, please verify that this
 sequence/sequence item is intended to execute on this
 type of sequencer", get_full_name()))

Example 14 - Full uvm_declare_p_sequencer error message

The `uvm_declare_p_sequencer macro performs the following actions:

1. Declares a p_sequencer handle of the SEQUENCER type passed in as a parameter. The

SEQUENCER handle should be a sequencer-type, NOT a sequencer-handle.
2. Overrides the empty virtual m_set_p_sequencer() method to do the following:

a. Calls the super.m_set_p_sequencer() method (typically empty).
b. Casts the sequence’s m_sequencer handle to the locally declared p_sequencer

handle.
c. The $cast operation checks to ensure the sequence’s m_sequencer handle

matches the type of the locally declared p_sequencer handle.
d. If the m_sequencer and p_sequencer handle types match, the

m_set_p_sequencer() completes successfully.
e. If the m_sequencer and p_sequencer handle types do NOT match, then the

declared p_sequencer type is wrong and the m_set_p_sequencer() method
executes a `uvm_fatal-command, which will abort the simulation and report the
consistent error message shown in Example 14.

The purpose of this macro is to declare and qualify a consistent p_sequencer handle of the user-
specified SEQUENCER TYPE that is passed to the macro as an input argument:

SEQUENCER p_sequencer;

Example 15 - p-sequencer handle declaration made by the `uvm_declare_p_sequencer

After declaring the p_sequencer handle (initially null), the macro calls the
m_set_p_sequencer() method to cast the current sequence's m_sequencer handle to the newly
declared p_sequencer handle to ensure that the p_sequencer handle is properly vetted and set
to exactly match the active m_sequencer handle.

Why cast m_sequencer to p_sequencer? Why not just use the m_sequencer handle directly?
Technically, there is no need to create the p_sequencer handle if the verification engineer properly
uses the m_sequencer handle and never makes a mistake. Unfortunately, erroneous handle usage
leads to runtime null-handle reference errors that abort the simulation and can be difficult to debug.
Part of the action performed by the m_set_p_sequencer() cast operation is to trap any illegal
m_sequencer/p_sequencer assignments and report a consistent error message to help identify
the problematic p_sequencer type declaration.

SNUG Silicon Valley 2024

Page 12

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

6. sequence.start(null) example
In multiple sections, we mentioned that a sequence could be started on null under the right
conditions. In this section, we show how to properly setup sequences so that a top-level test can
start a top-level sequence on null.

The verification academy description of virtual sequences [3] uses this basic technique. This
technique is not recommended because it requires a test_base class to create an init_seq()
method that uses fixed, constant paths to sequencers, which is not portable, and often missed when
modifying the testbench environment.

6.1.1 seq_base

The seq_base class shown in Example 16 has declared a sequencer handle name SQR. All user
sequences will extend from this seq_base class and inherit the SQR handle, which initially is not set
and is null.

class seq_base extends uvm_sequence #(trans1);
 `uvm_object_utils(seq_base)

 tb_sequencer SQR;

 function new(string name="seq_base");
 super.new(name);
 endfunction
endclass

Example 16 - seq.start(null) – seq_base example

6.1.2 sequence

The write_read sequence shown in Example 17 will start the write (wseq) and read (rseq)
sequences on the inherited SQR handle.

class write_read extends seq_base;
 `uvm_object_utils(write_read)

 rand int cnt;
 constraint loop_cnt {cnt inside {[3:5]};}

 function new(string name="write_read");
 super.new(name);
 endfunction

 task body;
 write_sequence wseq = write_sequence::type_id::create("wseq");
 read_sequence rseq = read_sequence::type_id::create("rseq");
 //--
 repeat (cnt) begin
 wseq.start(SQR);
 rseq.start(SQR);
 end
 endtask
endclass

Example 17 - seq.start(null) – sequence extended from seq_base example

SNUG Silicon Valley 2024

Page 13

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Each sequence that extends the seq_base class shown in Example 16 will inherit the
tb_sequencer SQR handle. But where is this SQR handle being set?

6.1.3 test_base

The test_base class shown in Example 18 defines an init_seq() method that takes as an
input, a sequencer handle. The init_seq() method then sets the SQR handle to e.agnt.sqr

class test_base extends uvm_test;
 `uvm_component_utils(test_base)

 env e;

 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 e = env::type_id::create("e", this);
 endfunction

 // Initialize the vseq_base handle
 function void init_seq(seq_base seq);
 seq.SQR = e.agnt.sqr;
 endfunction
endclass

Example 18 - seq.start(null) – test_base example

6.1.4 test

The test1 class shown in Example 19 extends the test_base class from Example 18, and
calls the init_seq() method on the write_read seq handle, which will set the SEQ handle in
all derivative sequences extended from the seq_base class to the sequencer located at
e.agnt.sqr.

class test1 extends test_base;
 `uvm_component_utils(test1)

 function new (string name, uvm_component parent); ...

 task run_phase(uvm_phase phase);
 write_read seq = write_read::type_id::create("seq");
 phase.raise_objection(this);
 if (!seq.randomize())
 `uvm_error("RAND", "Failed randomization");
 init_seq(seq);
 seq.start(null);
 phase.drop_objection(this);
 endtask
endclass

Example 19 - seq.start(null) – test1 extended from test_base example

SNUG Silicon Valley 2024

Page 14

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Now all subsequences started on the SQR handle will run on the e.agnt.sqr tb_sequencer.

After calling init_seq(seq), test1 calls seq.start(null), which sets the m_sequencer
handle in the write_read sequence to null, but the write_read sequence executes its
subsequences on the SQR-handle and not on the m_sequencer (null) handle.

7. Typical Virtual Sequence / Virtual Sequencer Technique
One very common technique for creating virtual sequences that are used to coordinate sequence
activity across multiple DUT interfaces is to use a virtual sequencer, which declares and holds
handles to the subsequencers that are required by the virtual sequences. Our DVCon 2016 paper
described this technique in detail [1].

The term subsequencer simply refers to other agent sequencers that are controlled by virtual
sequences, using the agent sequencer handles stored in an upper-level sequencer (the virtual
sequencer).

The virtual sequencer example shown in Figure 5 is based off the virtual sequence example shown
on Verification Academy [3], except this version of the example uses a virtual sequencer as opposed
to the init_vseq() method described on Verification Academy.

Figure 5 - Virtual sequencer example – block diagram

The virtual sequencer technique needs to access subsequencer handles from a central location.
UVM stored variables and handles are typically kept in a config object, but sequences cannot be
started on a config object, so the subsequencer handles are stored in a sequencer-type container;
the virtual sequencer, as shown in Example 20.

class vsequencer extends uvm_sequencer;
 `uvm_component_utils(vsequencer)

 a_sequencer a1_sqr;
 a_sequencer a2_sqr;
 b_sequencer b_sqr;
 c_sequencer c_sqr;

 function new(string name, uvm_component parent); ...
endclass

Example 20 - vsequencer (virtual sequencer) class example

SNUG Silicon Valley 2024

Page 15

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Using this technique, virtual sequences are started on the virtual sequencer, which gives them
access to the stored subsequencer handles. In essence, the virtual sequencer takes the place of a
config object to hold accessible subsequencer handles that can be accessed from a single location.

In this example, there are two sub-environments coded as shown in Example 21 and Example 22.

class env1 extends uvm_env;
 `uvm_component_utils(env1)
 a_agent a_agnt;
 c_agent c_agnt;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 a_agnt = a_agent::type_id::create("a_agnt", this);
 c_agnt = c_agent::type_id::create("c_agnt", this);
 endfunction
endclass

Example 21 - env1 block diagram and env1 class example

class env2 extends uvm_env;
 `uvm_component_utils(env2)
 b_agent b_agnt;
 a_agent a_agnt;

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 b_agnt = b_agent::type_id::create("b_agnt", this);
 a_agnt = a_agent::type_id::create("a_agnt", this);
 endfunction
endclass

Example 22 - env2 block diagram and env2 class example

The sub-environments include two agents each and both include their own copy of an a_agent
component.

Figure 6 - env_top block diagram – connect_phase() used to copy subsequencer handles to vsequncer handles

SNUG Silicon Valley 2024

Page 16

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

The env_top class is responsible for building the env1, env2 and vsequencer components. After
the components are all created during the build_phase(), the env_top uses the
connect_phase() to copy the component subsequencer handles to the subsequencer handles
declared in the vsequencer, as shown in Example 23.

class env_top extends uvm_env;
 `uvm_component_utils(env_top)

 env1 e1;
 env2 e2;
 vsequencer vsqr;

 function new(string name, uvm_component parent); ...

 function void build_phase(uvm_phase phase);
 e1 = env1::type_id::create("e1", this);
 e2 = env2::type_id::create("e2", this);
 vsqr = vsequencer::type_id::create("vsqr", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 vsqr.a1_sqr = e1.a_agnt.sqr;
 vsqr.c_sqr = e1.c_agnt.sqr;
 vsqr.a2_sqr = e2.a_agnt.sqr;
 vsqr.b_sqr = e2.b_agnt.sqr;
 endfunction
endclass

Example 23 - env_top class that sets all the subsequencer handles in the vsequencer

The environments, all testbench subcomponents, and the virtual sequencer make up the structural
portions of the virtual sequencer environment. Now the question becomes, how to pass the
subsequencer handles to the virtual sequences themselves?

This is where the `uvm_declare_p_sequencer macro and p_sequencer handles are used.

class vseq_base extends uvm_sequence #(uvm_sequence_item);
 `uvm_object_utils(vseq_base)
 `uvm_declare_p_sequencer(vsequencer)

 a_sequencer A1;
 a_sequencer A2;
 b_sequencer B;
 c_sequencer C;

 function new(string name = "vseq_base");
 super.new(name);
 endfunction

 task body;
 A1 = p_sequencer.a1_sqr;
 A2 = p_sequencer.a2_sqr;
 B = p_sequencer.b_sqr;
 C = p_sequencer.c_sqr;
 endtask
endclass

Example 24 - vseq_base (virtual sequence base) class using p_sequencer handles

SNUG Silicon Valley 2024

Page 17

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

In Example 24, the subsequencer handles are declared. Declaring subsequencer handles is easy!
Now how are the handles properly set to point to the actual subsequencers? Since virtual sequences
will be started on this virtual sequencer, the virtual sequence base class will have an m_sequencer
handle that points to the e_top.vsqr. Using the `uvm_declare_p_sequencer macro, the
vseq_base class has declared vsequencer p_sequencer and has cast m_sequencer to
p_sequencer so that the p_sequencer handle now points to the same vsequencer as the
m_sequencer handle.

The body() task of the vseq_base class, now uses the p_sequencer handle to copy the stored
subsequencer handles to the locally declare subsequencer handles. That answers the question,
"how are the handles properly set so that they point to the actual subsequencers?"

class vseq_A1_B_A2_A1 extends vseq_base;
 `uvm_object_utils(vseq_A1_B_A2_A1)

 function new(string name="vseq_A1_B_A2_A1");
 super.new(name);
 endfunction

 task body();
 a_seq a = a_seq::type_id::create("a");
 b_seq b = b_seq::type_id::create("b");
 a_seq a2 = a_seq::type_id::create("a2");
 super.body();
 a.start(A1);
 fork
 b.start(B);
 a2.start(A2);
 join
 a.start(A1);
 endtask
endclass

Example 25 - Virtual sequence example #1 extended from vseq_base class (vseq_A1_B_A2_A1)

class vseq_A1_B_C extends vseq_base;
 `uvm_object_utils(vseq_A1_B_C)

 function new(string name = "vseq_A1_B_C");
 super.new(name);
 endfunction

 task body();
 a_seq a = a_seq::type_id::create("a");
 b_seq b = b_seq::type_id::create("b");
 c_seq c = c_seq::type_id::create("c");
 super.body();
 a.start(A1);
 fork
 b.start(B);
 c.start(C);
 join
 endtask
endclass

Example 26 - Virtual sequence example #2 extended from vseq_base class (vseq_A1_B_C)

SNUG Silicon Valley 2024

Page 18

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

The vseq_base class had done the hard work of retrieving the actual subsequencer handles. Now
the virtual sequences1 can extend the vseq_base class, inherit the declared subsequencer
handles, and call the super.body() method to set the inherited handles in each virtual sequence
class, as shown in Example 25 and Example 26.

This is a common technique that shows that a sequence base class can use the
`uvm_declare_p_sequencer macro and p_sequencer handle to retrieve required testbench
component hierarchy information to be used for coordinated virtual sequence testing.

All of these p_sequencer coding gymnastics are required because handles stored as resources in
the uvm_resource_pool cannot be retrieved directly into the virtual sequence base class because
the uvm_config_db API requires get commands to be called using a two-argument cntxt
(component class handle), "inst_name" (string) that when combined must point to an actual
component in the testbench hierarchy, and sequences to do not have testbench hierarchy-paths. Is
there a better way?

8. Sequences can access resources directly
In our 2023 DVCon paper [2], we detailed how most UVM Verification engineers have been using
the wrong UVM resources API for more than 10 years.

There is no uvm_config_db! uvm_config_db is the secondary API used to store and retrieve
resources in the uvm_resource_pool, and this API has several restrictions that were included in
the API to be backward compatible with obsolete OVM set_config/get_config commands.

uvm_resource_db is the primary API to store and retrieve resources in the uvm_resource_pool,
and this API does not require the complex two-argument cntxt-component-handle, "inst_name"
-string that must match an actual component path in the UVM testbench.

Engineers are encouraged to read our DVCon 2023 paper [2] to learn the proper way to use UVM
resources. The uvm_resource_db is a much easier and more powerful way to interact with the
uvm_resource_pool.

Using the uvm_resource_db API, environments can store subsequencer handles as resources
that the virtual sequence base class can directly retrieve, also using the uvm_resource_db API.

1 "virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other
sequencers" [4]. A virtual sequence coordinates the execution of other sequences on multiple subsequencers.

SNUG Silicon Valley 2024

Page 19

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

9. Summary & Conclusions
Every sequence has an m_sequencer handle. The m_sequencer handle is set to the path where
the sequence runs. The m_sequencer handle is most often set using the command
sequence.start(full_path_to_sequencer).

The p_sequencer handle does not exist in sequences unless explicitly declared or unless the
`uvm_declare_p_sequencer macro is used. Engineers use the `uvm_declare_p_sequencer
macro and p_sequencer handle most often with virtual sequencers to ensure that a vseq_base
class has been started on the correct virtual sequencer.

Engineers have used the p_sequencer handle to retrieve information that is stored in a sequencer
to pass required testbench information to a sequence. This is unnecessary and has become a UVM
poor-programming practice because engineers did not know there was an easier and better way to
pass information to sequences.

The uvm_resource_db API can be used to store and retrieve resources in the
uvm_resource_pool, which can be accessed from anywhere in a UVM testbench, including
sequences; hence, there is no need to use the `uvm_declare_p_sequencer macro and
p_sequencer handle.

Engineers are encouraged to read the Cummings, Glasser, Chambers, DVCon 2023 paper [2] to
learn the proper way to use UVM resources. The uvm_resource_db is a much easier and more
powerful way to interact with the uvm_resource_pool.

10. Acknowledgements
I would like to thank my friend and colleague Jeff Montesano for his review and valuable feedback
on both this paper and the accompanying presentation slides.

11. References
[1] Clifford E. Cummings, Janick Bergeron, "Using UVM Virtual Sequencers & Virtual Sequences,"

DVCon 2016 Proceedings, also available at:
www.sunburst-design.com/papers/CummingsDVCon2016_Vsequencers.pdf

[2] Clifford E. Cummings, Mark Glasser, Heath Chambers, "The Untapped Power of UVM Resources
and Why Engineers Should Use the uvm_resource_db API," DVCon 2023 Proceedings, also
available at: www.sunburst-design.com/papers/CummingsDVCon2023_uvm_resource_db_API.pdf

[3] Tom Fitzpatrick, "Advanced UVM Layered Sequences," Verification Academy –
https://verificationacademy.com

[4] Universal Verification Methodology (UVM) 1.2 Class Reference – June 2014

12. Author & Contact Information
Sunburst Design World Class Training

Sunburst Design merged with Paradigm Works in February of 2020 and still provides World Class
SystemVerilog, Synthesis and UVM Verification training. For more information about training, contact
Cliff Cummings (cliffc@sunburst-design.com) or Michael Hoyt (michael.hoyt@paradigm-works.com)

SNUG Silicon Valley 2024

Page 20

Rev 1.0

Understanding the UVM m_sequencer, p_sequencer
Handles, and the `uvm_declare_p_sequencer Macro

Paradigm Works Expert Design Services, Verification Services & IP

Paradigm Works provides expert services in Semiconductor Architecture, Design, Synthesis,
Functional Verification, and DFT. For more information about Paradigm Works services, contact
Michael Hoyt at michael.hoyt@paradigm-works.com

Cliff Cummings is Vice President of Training at Paradigm Works and Founder of Sunburst Design.
Paradigm Works and Sunburst Design merged in February of 2020. Mr. Cummings has 42 years of
ASIC, FPGA and system design experience and 32 years of combined Verilog, SystemVerilog, UVM
verification, synthesis, and methodology training experience.

Mr. Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past 20 years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr. Cummings participated on every IEEE & Accellera SystemVerilog, SystemVerilog Synthesis,
SystemVerilog committee from 1994-2012, and has presented more than 50 papers on
SystemVerilog & SystemVerilog related design, synthesis, and verification techniques.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Email address: cliffc@sunburst-design.com

Last Updated: April 2024

